Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Tetraaqua-1 κ O,2 κ^3 O-(μ -2,4-dinitrophenolato-1 κ^2 O¹,O²:2 κ O¹)(2,4-dinitrophenolato-1 κ^2 O¹,O²)dilithium(I): a dinuclear lithium(I) complex

Eun-Ju Kim,^a Chong-Hyeak Kim^b and Sock-Sung Yun^a*

^aDepartment of Chemistry, College of Natural Science, Chungnam National University, Daejeon 305-764, Republic of Korea, and ^bCenter for Chemical Analysis, Korea Research Institute of Chemical Technology, PO Box 107, Yuseong, Daejeon 305-600, Republic of Korea Correspondence e-mail: ssyun@cnu.ac.kr

Received 2 July 2007 Accepted 31 July 2007 Online 24 August 2007

The title complex, $[Li_2(C_6H_3N_2O_5)_2(H_2O)_4]$, contains two kinds of Li atoms, *viz.* five-coordinated and four-coordinated. The five-coordinated Li ion has a tetragonal-pyramidal geometry, with a water molecule in the apical position and four O atoms from two 2,4-dinitrophenolate (2,4-DNP) ligands in the basal plane. The four-coordinated Li ion has a tetrahedral geometry, with three water molecules and one phenolate O atom of a 2,4-DNP ligand. The Li ions are bridged by a phenolate O atom, giving the complex a dinuclear structure. The crystal packing is stabilized by O- $H \cdots O$ hydrogen-bonding interactions involving the water molecules and nitro O atoms.

Comment

Nitrophenols and their metal salts have been investigated extensively because they have useful properties as highly energetic materials. The thermal and combustion properties (Stammler, 1969; Brill et al., 2000), and molecular structures and coordination behaviour (Harrowfield et al., 1995a,b) of 2,4,6-trinitrophenol metal salts have been thoroughly studied. In our studies of the crystal structures and thermal properties of lithium 2,6-dinitrophenol (Yun et al., 2004), yttrium 2,6dinitrophenol (Suh et al., 2002a), lanthanide 2,6-dinitrophenol (Suh et al., 2002b; Yun et al., 2006) and lanthanide 2,4,6trinitrophenol (Yun et al., 2005) salts, we have found that the coordination behaviour of the 2,6-dinitrophenol ligand is quite different from that of the 2,4,6-trinitrophenol ligand, in keeping with the electronic effect of the nitro substituent at the para position. As an extension of these studies, we have also employed the 2,4-dinitrophenol (2,4-DNP) ligand (Iwasaki & Kawano, 1977; Kagawa et al., 1976). We report here the preparation and crystal structure of the title lithium(I) 2,4-DNP complex, (I).

As shown in Fig. 1, compound (I) is a unique dinuclear complex with two kinds of Li atoms and two kinds of 2,4-DNP

ligands. The geometries of the Li atoms are tetragonal-pyramidal (Li1) and tetrahedral (Li2), while the coordination modes of the 2,4-DNP ligands are chelation and chelation/ bridging. The Li1 ion has a five-coordinate geometry, with a water molecule in the apical position and four O atoms from two 2,4-DNP ligands in the basal plane. As expected, the Li– O distances are slightly longer in the pyramid than in the tetrahedron (Table 1). Each of the 2,4-DNP ligands forms a six-membered chelate ring with Li1 through the O atoms of

Figure 1

The molecular structure of complex (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 2 The crystal packing diagram of complex (I), viewed along the b axis. Hydrogen-bond interactions are shown as dashed lines.

the phenolate and nitro groups. Li2 has a four-coordinate geometry, formed by three water molecules and one phenolate O atom of a 2,4-DNP ligand. The phenolate O atom serves as the bridge between the Li1 and Li2 atoms. There is no metalto-metal interaction; the Li1...Li2 distance is 3.172 (1) Å. The dinuclear complexes are linked in a three-dimensional manner by numerous intermolecular O_{water}-H···O_{2.4-DNP} and O_{water} – $H \cdot \cdot \cdot O_{water}$ hydrogen bonds (Fig. 2 and Table 2).

Although lithium is now known in at least 20 coordination geometries with coordination numbers ranging from 1 to 12 (Greenwood & Earnshaw, 1998), this dinuclear lithium 2,4-DNP complex with both four- and five-coordinate Li is unique. To our knowledge, only lithium o-phenylenedioxydiacetate trihydrate, [Li₂(C₁₀H₈O₆)(H₂O)₃]₂ (Smith et al., 1986), has a similar geometry combination. However, this complex is dimeric, with four Li atoms bridged by the two o-phenylenedioxydiacetate ligands.

The structural features of (I) are very different from those of the dinuclear lithium 2,6-DNP complex, [Li(2,6-DNP)- $(H_2O)]_2 \cdot 2H_2O$, which we have studied recently (Yun *et al.*, 2004). Li1 and Li2 of the lithium 2,6-DNP complex are both coordinated to five O atoms in a square-pyramidal geometry, and there are both coordinated and free water molecules.

Experimental

The title lithium(I) 2,4-DNP complex, (I), was prepared in a manner similar to that used for the preparation of the lithium(I) 2,6-DNP complex (Yun et al., 2004). Pale-yellow crystals of (I) suitable for single-crystal X-ray diffraction were obtained and characterized by energy dispersive X-ray spectroscopy, FT-IR and elemental analysis. Analysis calculated for C₁₂H₁₄Li₂N₄O₁₄: C 31.87, H 3.12, N 12.39, Li 3.07%; found: C 31.94, H 3.14, N 12.38, Li 3.05%. The 2,4-DNP ligand was confirmed by assignment of the relevant FT-IR absorption bands (Nakamoto, 1997).

18045 measured reflections

 $R_{\rm int} = 0.024$

refinement $\Delta \rho_{\text{max}} = 0.22 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.29 \text{ e } \text{\AA}^{-3}$

4473 independent reflections

3497 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of independent and constrained

Crystal data

$[Li_2(C_6H_3N_2O_5)_2(H_2O)_4]$	$\gamma = 86.276 \ (2)^{\circ}$
$M_r = 452.15$	$V = 909.16 (4) \text{ A}^3$
Triclinic, P1	Z = 2
$a = 8.3038 (2) A_{\circ}$	Mo $K\alpha$ radiation
b = 10.1267 (3) Å	$\mu = 0.15 \text{ mm}^{-1}$
c = 11.2984 (3) A	T = 296 (2) K
$\alpha = 76.733 \ (2)^{\circ}$	$0.39 \times 0.23 \times 0.14 \text{ mm}$
$\beta = 79.565 \ (2)^{\circ}$	

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2000) $T_{\rm min}=0.944,\;T_{\rm max}=0.979$

Refinement

2	
$R[F^2 > 2\sigma(F^2)] = 0.037$	
$wR(F^2) = 0.115$	
S = 1.04	
4473 reflections	
314 parameters	
5 restraints	

Table 1

Selected geometric parameters (Å, °).

Li1-O7	1.923 (2)	Li2-OW4	1.936 (2)
Li1-OW1	2.001 (3)	Li2-OW3	1.944 (2)
Li1-O27	2.004 (2)	Li2-OW2	1.967 (2)
Li1-O9	2.053 (2)	Li2-O27	1.978 (2)
Li1-O29	2.068 (2)		
O7-Li1-OW1	105.87 (11)	O27-Li1-O29	82.37 (8)
O7-Li1-O27	144.96 (13)	O9-Li1-O29	158.14 (13)
OW1-Li1-O27	109.11 (10)	OW4-Li2-OW3	97.58 (10)
O7-Li1-O9	84.53 (8)	OW4-Li2-OW2	103.81 (11)
OW1-Li1-O9	105.18 (11)	OW3-Li2-OW2	118.93 (11)
O27-Li1-O9	88.33 (9)	OW4-Li2-O27	111.11 (10)
O7-Li1-O29	91.78 (9)	OW3-Li2-O27	115.48 (11)
OW1-Li1-O29	96.56 (10)	OW2-Li2-O27	108.59 (10)

Table 2		
** 1		

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$OW1 - HW1A \cdots O32^{i}$	0.79 (2)	2,53 (2)	3 3083 (15)	171 (2)
$OW1 - HW1B \cdots O27^{ii}$	0.82(2)	2.33(2) 2.41(2)	3.1461 (15)	151(2)
$OW1 - HW1B \cdots O9^{ii}$	0.82(2)	2.59 (2)	3.1821 (15)	130 (2)
OW2−HW2A···O29 ⁱⁱⁱ	0.76 (2)	2.58 (2)	2.9592 (12)	113 (2)
OW2−HW2A···O13 ^{iv}	0.76 (2)	2.59 (2)	3.1262 (13)	129 (2)
$OW2 - HW2B \cdots O7^{iii}$	0.83 (2)	1.96 (2)	2.7936 (13)	174 (2)
$OW3-HW3A\cdots O12^{iv}$	0.84(2)	2.04 (2)	2.8725 (14)	173 (2)
$OW3 - HW3B \cdot \cdot \cdot OW1^{v}$	0.80(2)	2.50 (2)	3.2655 (17)	159 (2)
$OW4-HW4A\cdots OW2^{vi}$	0.80 (2)	2.16 (2)	2.9560 (16)	178 (2)
$OW4-HW4B\cdots O33^{vii}$	0.82 (2)	2.02 (2)	2.8381 (13)	174 (2)

Symmetry codes: (i) -x + 1, -y, -z + 3; (ii) -x + 1, -y, -z + 2; (iii) -x + 1, -y + 1, -z + 2; (iv) -x + 1, -y + 1, -z + 1; (v) x - 1, y, z; (vi) -x, -y + 1, -z + 2; (vii) -x, -y, -z + 3.

The H atoms on the 2,4-DNP ligand were positioned geometrically and refined using a riding model, with C-H = 0.93 Å and $U_{iso}(H) =$ $1.2U_{eq}(C)$. The water H atoms were located in a difference electrondensity map and refined with $U_{iso}(H) = 1.5U_{eq}(O)$ and with O-H distances restrained to 0.82 (2) Å.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 2001); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2001); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This work was supported by a grant from Chungnam National University.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SQ3089). Services for accessing these data are described at the back of the journal.

References

- Brill, T. B., Zhang, T. L. & Tappan, B. C. (2000). Combust. Flame, 121, 662–670.
 Bruker (2001). SMART (Version 5.625) and SAINT (Version 6.28a). Bruker AXS Inc., Wisconsin, Madison, USA.
- Greenwood, N. N. & Earnshaw, A. (1998). Chemistry of the Elements, pp. 90– 99. Oxford: Butterworth–Heinemann.
- Harrowfield, J. M., Skelton, B. W. & White, A. H. (1995a). Aust. J. Chem. 48, 1311–1331.

- Harrowfield, J. M., Skelton, B. W. & White, A. H. (1995b). Aust. J. Chem. 48, 1333–1347.
- Iwasaki, F. & Kawano, Y. (1977). Acta Cryst. B33, 2455-2459.
- Kagawa, T., Kawai, R., Kashino, S. & Haisa, M. (1976). Acta Cryst. B32, 3171– 3175.
- Nakamoto, K. (1997). Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B. New York: John Wiley and Sons Inc.
- Sheldrick, G. M. (2000). SADABS. Version 2.03. University of Göttingen, Germany.
- Sheldrick, G. M. (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
- Smith, G., O'Reilly, E. J. & Kennard, C. H. L. (1986). Acta Cryst. C42, 1329– 1331.
- Stammler, M. (1969). Proceedings of the Second International Conference on Thermal Analysis, Vol. 2, edited by R. F. Schwenker Jr, pp. 1127–1146. New York: Academic Press.
- Suh, H. R., Suh, H. S., Yun, S. S., Lee, E. K. & Kang, S. K. (2002a). Acta Cryst. C58, m202–m203.
- Suh, H. R., Suh, H. S., Yun, S. S., Lee, E. K. & Kang, S. K. (2002b). Acta Cryst. E58, m284–m286.
- Yun, S. S., Kang, S. K., Suh, H. R., Suh, H. S., Lee, E. K., Kim, J. K. & Kim, C. H. (2005). Bull. Korean Chem. Soc. 26, 1197–1202.
- Yun, S. S., Suh, H. R., Suh, H. S., Kang, S. K., Kim, J. K. & Kim, C. H. (2006). J. Alloys Compd, 408–412, 1030–1036.
- Yun, S. S., Yeon, J. H., Suh, H. R., Kim, J. K., Kim, W. C. & Kang, S. K. (2004). J. Coord. Chem. 57, 989–995.